MATLAB实现多种群遗传算法

news/2025/2/2 23:30:52 标签: matlab, 开发语言

多种群遗传算法(MPGA, Multi-Population Genetic Algorithm)是一种改进的遗传算法,它通过将种群分成多个子种群并在不同的子种群之间进行交叉和交换,旨在提高全局搜索能力并避免早期收敛。下面是多种群遗传算法的主要步骤和流程:

一、多种群遗传算法的流程

1. 初始化
  • 初始化多个种群:与传统遗传算法(GA)相比,多种群遗传算法会将种群分为多个小的子种群(通常称为“子种群组”或“种群族群”)。每个子种群通常都是随机初始化的,或者基于某些启发式方法初始化。
  • 选择适当的子种群数:根据问题的复杂度和资源限制,选择合适数量的子种群。例如,可以将种群划分为 4 或 8 个子种群。
2. 评估适应度
  • 对每个子种群中的个体进行适应度评估。适应度评估函数通常是基于目标问题的要求(例如优化目标函数)。
3. 选择操作
  • 选择父代个体:在每个子种群内使用选择操作(如轮盘赌选择、锦标赛选择等)来选择父代个体。选择的标准通常是个体的适应度,适应度越高,选择的概率越大。
4. 交叉操作
  • 在每个子种群内使用交叉操作(如单点交叉、双点交叉等)生成新的后代。交叉的目标是通过组合父代个体的遗传信息来探索更广泛的解空间。
  • 可以选择不同的交叉操作策略,以保持子种群的多样性。
5. 变异操作
  • 对每个子种群中的个体进行变异操作,以增加种群的多样性。变异通常是随机的,改变个体的基因值,以避免陷入局部最优解。
  • 变异操作的概率和强度可以根据具体问题调整。
6. 替代操作
  • 在每个子种群内,通常会使用某种替代策略来选择哪些个体留在子种群中(例如,精英策略、轮盘赌替代等)。
  • 该步骤是确保遗传算法通过不断迭代优化种群的关键。
7. 种群间交流/迁移
  • 这一过程是多种群遗传算法的特色。在每一代的迭代中,来自不同子种群的个体会相互交换(迁移),以促进全局搜索。交流方式通常有两种:
    • 同步交流:所有子种群同时进行交流,每个子种群选择一定数量的个体进行迁移。
    • 异步交流:子种群之间在不同的时间步骤进行交流。也就是说,某些子种群可能在某个代次进行迁移,而其他子种群则在其他代次进行迁移。
  • 迁移策略:迁移可以通过选择父代个体、随机选择个体或选择最适应个体的方式进行。迁移数量和频率可以根据需要调整。
8. 终止条件
  • 终止条件检查:通常多种群遗传算法会设置一些终止条件,比如达到最大迭代次数、获得足够好的解、或者满足某个精度要求。如果满足这些条件,算法停止运行。
  • 输出最优解:输出迭代过程中找到的最优解或近似最优解。

迁移策略与交流方式

迁移策略和交流方式是多种群遗传算法中非常重要的部分,常见的策略有:

  • 环状迁移(Ring Migration):每个子种群只与其相邻的子种群进行交流,形成一个环状结构。即第一个子种群与第二个子种群交换个体,第二个与第三个交换,以此类推,最后一个子种群与第一个子种群进行交流。
  • 全局迁移(Global Migration):所有子种群之间可以进行交流,任何子种群之间都可以相互迁移个体。这种方法有助于加速全局搜索。
  • 随机迁移(Random Migration):子种群之间的迁移是随机的,任何两个子种群之间都可能交换个体。此策略增加了多样性,但可能导致不稳定的搜索过程。(本文采用此方法)

二、MATLAB代码

完整代码见:https://download.csdn.net/download/corn1949/90333119

三、程序结果

算法运行时间

runtime1 =

                 0.7913766

遗传算法优化得到的最优目标函数值

bestValue =

          1.11702110252982

遗传算法优化得到的最优染色体

bestChrom =

  1 至 6 列

          8.82708520806725          7.91028217920581          6.84781965885676          6.35901822026773          4.86529713676558          3.49578240257491

  7 至 9 列

           3.6555307035593          2.45752155848663          1.12487043073628

>> 

 完整代码见:https://download.csdn.net/download/corn1949/90333119


http://www.niftyadmin.cn/n/5840361.html

相关文章

安全防护前置

就业概述 网络安全工程师/安全运维工程师/安全工程师 安全架构师/安全专员/研究院(数学要好) 厂商工程师(售前/售后) 系统集成工程师(所有计算机知识都要会一点) 学习目标 前言 网络安全事件 蠕虫病毒--&…

Python 梯度下降法(六):Nadam Optimize

文章目录 Python 梯度下降法(六):Nadam Optimize一、数学原理1.1 介绍1.2 符号定义1.3 实现流程 二、代码实现2.1 函数代码2.2 总代码 三、优缺点3.1 优点3.2 缺点 四、相关链接 Python 梯度下降法(六):Nad…

5.攻防世界simple_php

打开题目页面如下 看到是PHP代码&#xff0c;进行代码审计 <?php // 显示当前 PHP 文件的源代码 show_source(__FILE__); // 从 HTTP GET 请求中获取名为 a 的参数的值&#xff0c;并将其赋值给变量 $a。 // 符号是错误抑制符&#xff0c;它会抑制可能出现的未定义索引警…

Java基础知识总结(三十七)--io异常的处理方式

io一定要写finally&#xff1b; 写入数据的细节&#xff1a; 1&#xff1a;window中的换行符&#xff1a;\r\n两个符号组成。 linux&#xff1a;\n。 2&#xff1a;续写数据&#xff0c;只要在构造方法中传入新的参数true。 3&#xff1a;目录分割符&#xff1a;window \\ …

【华为OD-E卷 - 连续出牌数量 100分(python、java、c++、js、c)】

【华为OD-E卷 - 连续出牌数量 100分&#xff08;python、java、c、js、c&#xff09;】 题目 有这么一款单人卡牌游戏&#xff0c;牌面由颜色和数字组成&#xff0c;颜色为红、黄、蓝、绿中的一种&#xff0c;数字为0-9中的一个。游戏开始时玩家从手牌中选取一张卡牌打出&…

【Java异步编程】基于任务类型创建不同的线程池

文章目录 一. 按照任务类型对线程池进行分类1. IO密集型任务的线程数2. CPU密集型任务的线程数3. 混合型任务的线程数 二. 线程数越多越好吗三. Redis 单线程的高效性 使用线程池的好处主要有以下三点&#xff1a; 降低资源消耗&#xff1a;线程是稀缺资源&#xff0c;如果无限…

为AI聊天工具添加一个知识系统 之79 详细设计之20 正则表达式 之7

本文要点 要点 “正则表达式” 本来是计算机科学计算机科学的一个概念。本项目将它推广&#xff08;扩张&#xff09;到认知科学的“认知范畴”概念&#xff0c; 聚合&#xff08;收敛&#xff09;到 神经科学 的“神经元”概念。 做法是&#xff1a;用reg 来系统化定义认知…

litemall,又一个小商场系统

litemall Spring Boot后端 Vue管理员前端 微信小程序用户前端 Vue用户移动端 代码地址&#xff1a;litemall: 又一个小商城。 litemall Spring Boot后端 Vue管理员前端 微信小程序用户前端 Vue用户移动端